GPU Coder™ Release Notes

MATLAB

(} MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

GPU Coder™ Release Notes
© COPYRIGHT 2017-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

R2020a

cuBLAS Support: Generate CUDA code for strided and batched matrix
multiply 1-2

Single Shot Object Detection (SSD) Networks: Object detection on
NVIDIA GPU by using a single shot multibox detector 1-2

Row-Major Array Layout: Simplify interfacing generated deep learning
code with target libraries by storing arrays in row-major layout 1-2

Long Short-Term Memory (LSTM) Networks: Generate code for

bidirectional and stateful LSTM 1-3
Multi-Output Networks: Generate code for networks with multiple

OULPUES e 1-3
Deep Learning Networks: Generate code for more networks 1-3
Generate code for half-precision floating point datatype 1-3
Deep Learning Layers: Generate code for more layers 1-3
Code generation for more MATLAB functions 1-4
Code generation for more Image Processing Toolbox functions 1-4
Code generation for more Computer Vision Toolbox functions 1-5
Code generation for more Signal Processing Toolbox functions 1-5
Code generation for Audio Toolbox functions 1-5

Deep Learning: Generate code that uses newer versions of ARM Compute
Hbrary e 1-5

New and updated examples 1-5

Functionality being removed orchanged 1-6

iii

iv

Contents

R2019b

Long Short-Term Memory (LSTM) Networks: Generate code for recurrent
networks suchas LSTM 2-2

Deep Learning Targeting: Deploy deep learning networks to ARM Mali

GPU ProcCesSOrsS ittt e e e e 2-2
TensorRT Support: Support for NVIDIA TensorRT library on the Windows
platform 2-2
Deep Learning Networks: Generate code for more networks 2-2
Deep Learning Layers: Generate code for more layers 2-2
1-D reduction operationsonthe GPU 2-3
Workflow and generated code improvements 2-4
Code generation for more Image Processing Toolbox functions 2-4
Code generation for more MATLAB functions 2-4
Code generation for more Computer Vision Toolbox functions 2-4
Functionality being removed orchanged 2-4
Newexamples e e 2-4
R2019a
Deep Learning: Generate code for more layers 3-2

TensorRT Support: Generate code that takes advantage of FP16

optimization in deep learning inference applications 3-2
Deep Learning: Generate code for more networks 3-3
CUDA optimized transpose function 3-3
Support for unbounded variables 3-3
Workflow and generated code quality improvements 3-3
Code generation for more MATLAB functions 3-3
Code generation for more Image Processing Toolbox functions 3-4

Code generation for more Computer Vision Toolbox functions 3-4

Code generation for Statistics and Machine Learning Toolbox functions

.. 3-4
Code generation for Wavelet Toolbox function 34
Newexamples e 3-4

R2018b

Deep Learning Retargetability: Deploy applications that use deep

learning networks onto Intel MKL-DNN, and NVIDIA TensorRT by using

the codegen function 4-2
Thrust Library Support: Generate GPU-accelerated code for sort and

reduction operations by using the Thrust library 4-2
Deep Learning Optimization: Improve performance and memory

utilization through auto-tuning, layer fusion, and buffer minimization

.. 4-2
gpuArray Support: Use gpuArray arguments at the I/O of MEX targets

.. 4-3
Support Package for NVIDIA GPUs: Target NVIDIA Jetson and DRIVE

platforms e 4-3
Calling External CUDA Functions: Use GPU arguments that pass by
reference when using coder.ceval 4-3
Deep Learning Layers: Generate code for new network layers 4-3
Ease-of-use and traceability improvements 4-3
Code generation for more Image Processing Toolbox functions 4-4
Deep learning examples 4-4
Functionality being removed orchanged 4-4
R2018a
Directed Acyclic Graph (DAG) Networks: Generate CUDA code for deep
learning networks with DAG topology 5-2

Deep Learning Layers: Generate CUDA code for popular networks such as
GoogLeNet, ResNet, and SegNet

TensorRT Support: Generate code that takes advantage of NVIDIA deep
learning inference optimizer and runtime

Multi-Platform Deep Learning Targeting: Deploy deep learning networks
toIntel and ARM Processorsuiiieiiiennnennn.

Code generation for Image Processing Toolbox functions
Code generation for Computer Vision System Toolbox functions
Loop and kernel optimization

Deep learning examples

CUDA C and C++ code Generation
Deep Learning Network Support
Image Processing Toolbox Support
CUDA Kernel and memory Optimizations
MEX Function Generation for code Verification and Acceleration
Legacy CUDA code Integration
Hardware Integration with NVIDIATegra

Code Profiling and Verification

vi Contents

R2020a

Version: 1.5
New Features
Bug Fixes

Compatibility Considerations

R2020a

1-2

cuBLAS Support: Generate CUDA code for strided and batched matrix
multiply

In R2020a, you can generate CUDA® code from MATLAB® functions to compute many (small) matrix-
matrix multiplies at once. This technique is known as batched matrix-matrix multiply can potentially
improve device utilization and overall performance.

Use the gpucoder.batchedMatrixMultiply function to perform batched matrix multiply
operation of the form D = (alpha*A)xB.

Use the gpucoder.batchedMatrixMultiplyAdd function to perform batched matrix multiply with
add operation of the form D = (alpha*A)xB + (beta*C). For example,

[D1,D2] = gpucoder.batchedMatrixMultiplyAdd(Al,B1,C1,A2,B2,C2,...
'alpha',0.3, 'beta', 0.4, 'transpose','TT');

You can also perform strided matrix multiplication for matrix batches, where subsequent matrices are
memory-contiguous by using the gpucoder.stridedMatrixMultiply and
gpucoder.stridedMatrixMultiplyAdd functions. For example,

D = gpucoder.stridedMatrixMultiply(A,B, 'alpha',0.4, 'transpose','TT"');

Single Shot Object Detection (SSD) Networks: Object detection on
NVIDIA GPU by using a single shot multibox detector

In R2020a, you can generate CUDA code for an SSD network (ssdObjectDetector object) and take
advantage of the NVIDIA® cuDNN and TensorRT libraries.

The SSD detector uses a single stage object detection network that merges detections predicted from
multiscale features. The SSD is faster than two-stage detectors, such as the Faster R-CNN detector
and can localize objects more accurately compared to single-scale feature detectors such as the
YOLO v2 detector. For more information, see “Getting Started with SSD Multibox Detection”
(Computer Vision Toolbox).

For more information on the SSD layers supported in this release, see Supported Networks and
Layers. The “Code Generation for Object Detection by Using Single Shot Multibox Detector” shows
how to generate CUDA code for an SSD based vehicle object detector.

Row-Major Array Layout: Simplify interfacing generated deep learning
code with target libraries by storing arrays in row-major layout

The code that you generate can store array elements in column-major or row-major array layout. In
column-major array layout, the elements of the columns are contiguous in memory. In row-major, the
elements of the rows are contiguous. MATLAB uses column-major array layout by default, whereas
the deep learning networks supported by NVIDIA cuDNN, TensorRT, and ARM® Compute libraries
use row-major layout by default.

In previous releases, the code generator produced CUDA C++ code that performed transpose
operations on the row-major data and called predict or activation on the transposed data. In R2020a,
you can choose to generate code that uses row-major array layout. Row-major layout can improve
performance for certain networks and ease integration with other code that also uses row-major
layout. For more information, see “Array Layout” (MATLAB Coder).

https://www.mathworks.com/help/releases/R2019b/gpucoder/ug/gpucoder-supported-networks-layers.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/ug/gpucoder-supported-networks-layers.html

For more information on deep learning code generation, see “Deep Learning with GPU Coder”.

Long Short-Term Memory (LSTM) Networks: Generate code for
bidirectional and stateful LSTM

In R2020a, you can generate CUDA code for bidirectional and stateful LSTM networks. A
bidirectional LSTM network is a type of recurrent neural network (RNN) that learns bidirectional
long-term dependencies between time steps of sequence data. Stateful LSTM networks can
remember the state of the network between predictions. The network state can be useful when you
do not have the complete time series in advance, or if you want to make multiple predictions on a
long time series. For more information, see “Long Short-Term Memory Networks” (Deep Learning
Toolbox).

For a code generation example using stateful LSTM, see “Code Generation for a Sequence-to-
Sequence LSTM Network”

For more information on the LSTM layers supported in this release, see Supported Networks and
Layers. Use the predictAndUpdateState to predict parts of a time series and update the network
state. Use the resetState to reset the network state between predictions.

Multi-Output Networks: Generate code for networks with multiple
outputs

In R2020a, you can generate code for networks with multiple output layers. For information on
training multiple output networks, see “Multiple-Input and Multiple-Output Networks” (Deep
Learning Toolbox).

Deep Learning Networks: Generate code for more networks

In R2020a, you can generate code for networks such as Darknet19, Darknet53, NASNet-Large,
NASNet-Mobile, and Inception-ResNet-v2. For more information, see “Supported Networks and
Layers”.

Generate code for half-precision floating point data type

In R2020a, you can generate CUDA code for half-precision floating point data types in MATLAB. Half-
precision data types occupy only 16 bits of memory, but their floating-point representation enables
them to handle wider dynamic ranges than integer or fixed-point data types of the same size.

For a full list of features that support half-precision code generation, see half. For examples that

demonstrate half-precision code generation, see Edge Detection with Sobel Method in Half-Precision,
“Fog Rectification”, and “Stereo Disparity”.

Deep Learning Layers: Generate code for more layers

Code generation with the CUDA Deep Neural Network library (cuDNN) supports these additional
layers:

* anchorBoxLayer layer to store anchor boxes for object detection.

1-3

https://www.mathworks.com/help/releases/R2019b/gpucoder/ug/gpucoder-supported-networks-layers.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/ug/gpucoder-supported-networks-layers.html

R2020a

* Bidirectional long short-term memory (BiLSTM) layer (bilstmLayer).

* concatenationLayer that concatenates inputs along a specified dimension.

* Flatten layer (flattenLayer).

* Global max pooling layer (globalMaxPooling2dLayer).

* ssdMergelLayer layer to merge activations from several feature maps.

* Word embedding layer for deep learning networks (wordEmbeddinglLayer).

* Layer that implements ONNX identity operator (nnet.onnx.layer.IdentityLayer).

Code generation with the NVIDIA TensorRT Library supports these additional layers:

* anchorBoxLayer layer to store anchor boxes for object detection.

* Bidirectional long short-term memory (BiLSTM) layer (bilstmLayer).

* concatenationLayer that concatenates inputs along a specified dimension.

* Global max pooling layer (globalMaxPooling2dLayer).

* Long short-term memory (LSTM) layer (LstmLayer).

* Sequence input layer (sequenceInputlLayer).

* ssdMergeLayer layer to merge activations from several feature maps.

* Word embedding layer for deep learning networks (wordEmbeddingLayer).

* Layer that implements ONNX identity operator (nnet.onnx.layer.IdentityLayer).

Code generation with the ARM Compute Library supports these additional layers:

* anchorBoxLayer layer to store anchor boxes for object detection.
* Layer that applies 2-D cropping to the input (crop2dLayer).
* Global max pooling layer (globalMaxPooling2dLayer).

+ Affine layer for the ONNX network that performs element-wise scaling of the input followed by an
addition (nnet.onnx.layer.ElementwiseAffinelLayer).

* Layer that implements ONNX identity operator (nnet.onnx.layer.IdentitylLayer).

For more information, see “Supported Networks and Layers”.

Code generation for more MATLAB functions

o filter
o fftshift
e circshift

Code generation for more Image Processing Toolbox functions

* bwlookup

* imrotate

o imboxfilt

* imgaussfilt

1-4

Code generation for more Computer Vision Toolbox functions

* disparitySGM
* pointCloud

Code generation for more Signal Processing Toolbox functions

o fftfilt
o stft
e istft

Code generation for Audio Toolbox functions

* mfcc

Deep Learning: Generate code that uses newer versions of ARM
Compute library

In R2020a, you can generate more efficient C++ code for layers and networks by using version 19.05
of the ARM Compute Library for computer vision and machine learning. To learn more about
supported compilers and libraries, see “Code Generation for a Sequence-to-Sequence LSTM
Network”“Installing Prerequisite Products”. For an example on targeting the ARM Compute Library,
see “Code Generation for Deep Learning Networks Targeting ARM Mali GPUs”.

New and updated examples

This release adds the following examples:

* “Code Generation for Object Detection by Using Single Shot Multibox Detector” - Shows how to
generate CUDA code for an SSD network (ssdObjectDetector object) and take advantage of the
NVIDIA cuDNN libraries. An SSD network is based on a feed-forward convolutional neural
network that detect multiple objects within the image in a single shot. SSD network can be
thought of as having two sub-networks. A feature extraction network, followed by a detection
network..

* Edge Detection with Sobel Method in Half-Precision - Demonstrates edge detection in an image
with a MEX function generated from a MATLAB function. The edge detection algorithm is
implemented with half-precision data type.

This release updates the following examples:

* Code Generation for a Sequence-to-Sequence LSTM Network - demonstrates how to generate
CUDA code for a long short-term memory (LSTM) network. The example generates a MEX
application that makes predictions at each step of an input time series. Two methods are
demonstrated: a method using a standard LSTM network, and a method leveraging the stateful
behavior of the same LSTM network. This example uses accelerometer sensor data from a
smartphone carried on the body and makes predictions on the activity of the wearer. User
movements are classified into one of five categories, namely dancing, running, sitting, standing,
and walking.

* “Fog Rectification” - Shows the use of image processing functions for GPU code generation. This
example also shows half-precision code generation using GPU Coder™.

1-5

https://www.mathworks.com/help/releases/R2019b/gpucoder/examples/code-generation-sequence-to-sequence-LSTM.html

R2020a

1-6

» “Stereo Disparity” - Shows how to generate a MEX function from a MATLAB function that
computes the stereo disparity of two images. This example also shows half-precision code
generation using GPU Coder.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter doc gpucoder.

Functionality being removed or changed

The coder.checkGpuInstallApp has been renamed to gpucoderSetup.

Compatibility Considerations

Functionality

What Happens When
You Use This
Functionality?

Use This Instead

Compatibility
Considerations

coder.checkGpulInst
allApp

Still runs

Use gpucoderSetup

Replace all instances of
coder.checkGpuInst
allApp with
gpucoderSetup.

R2019b

Version: 1.4
New Features
Bug Fixes

Compatibility Considerations

R2019b

2-2

Long Short-Term Memory (LSTM) Networks: Generate code for
recurrent networks such as LSTM

In R2019b, you can generate CUDA code for an LSTM network and take advantage of the NVIDIA
cuDNN library. An LSTM network is a type of recurrent neural network (RNN) that can learn long-
term dependencies between time steps of sequence data. For more information on the LSTM layers
supported in this release, see Supported Networks and Layers.

Deep Learning Targeting: Deploy deep learning networks to ARM Mali
GPU processors

You can generate code for prediction from a pretrained convolutional neural network (CNN) and
target the code to an embedded platform that uses an ARM Mali GPU processor. The code generator
takes advantage of ARM Compute Library for computer vision and machine learning. The generated
code implements a CNN that has the architecture, layers, and parameters specified in the input
SeriesNetwork or DAGNetwork objects. For more information, see Code Generation for Deep
Learning Networks Targeting ARM Mali GPUs.

For information on the networks and layers supported for code generation, see Supported Networks
and Layers.

TensorRT Support: Support for NVIDIA TensorRT library on the
Windows platform

In R2019b, you can take advantage of the NVIDIA low-latency, high-throughput TensorRT inference
library for your deep learning applications and generate CUDA code on the Windows® platform. For
information on the supported TensorRT version, see Installing Prerequisite Products. To set up your
development computer for code generation, see Setting Up the Prerequisite Products. To generate
CUDA code targeting the TensorRT libraries, see Code Generation for Deep Learning Networks by
Using TensorRT.

Deep Learning Networks: Generate code for more networks

In R2019b, you can generate code for networks such as DeepLab-v3+, MobileNet-v2, ONNX™ (Open
Neural Network Exchange), and Xception. For more information, see Supported Networks and
Layers.

Deep Learning Layers: Generate code for more layers

Code generation with the CUDA Deep Neural Network library (cuDNN) supports these additional
layers:

+ Pixel classification layer by using generalized dice loss for semantic segmentation
(dicePixelClassificationlLayer)

* Exponential linear unit (ELU) layer (eluLayer)

» 2-D grouped convolutional layer (groupedConvolution2dLayer)

* Long short-term memory (LSTM) layer (LstmLayer)

» All output layers including custom classification or regression output layers created by using
nnet.layer.ClassificationLayer or nnet.layer.RegressionLayer

https://www.mathworks.com/help/releases/R2019b/gpucoder/ug/gpucoder-supported-networks-layers.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/seriesnetwork.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/dagnetwork.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/ug/code-generation-for-deep-learning-networks-with-arm-compute-library.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/ug/code-generation-for-deep-learning-networks-with-arm-compute-library.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/ug/gpucoder-supported-networks-layers.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/ug/gpucoder-supported-networks-layers.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/gs/install-prerequisites.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/gs/setting-up-the-toolchain.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/ug/code-generation-using-tensorrt.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/ug/code-generation-using-tensorrt.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/ug/gpucoder-supported-networks-layers.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/ug/gpucoder-supported-networks-layers.html
https://www.mathworks.com/help/releases/R2019b/vision/ref/nnet.cnn.layer.dicepixelclassificationlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.elulayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.groupedconvolution2dlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.lstmlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/classificationlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/regressionlayer.html

Sequence input layer (sequenceInputlLayer)
Hyperbolic tangent (tanh) layer (tanhLayer)

Affine layer for the ONNX network that performs element-wise scaling of the input followed by an
addition (nnet.onnx.layer.ElementwiseAffinelLayer)

Flatten layer for the ONNX network that flattens the spatial dimensions of the input tensor to the
channel dimensions (nnet.onnx. layer.FlattenLayer)

Code generation with the NVIDIA TensorRT Library supports these additional layers:

Clipped rectified linear unit (ReLU) layer (clippedReluLayer)

Pixel classification layer using generalized dice loss for semantic segmentation
(dicePixelClassificationLayer)

Exponential linear unit (ELU) layer (eluLayer)
2-D grouped convolutional layer (groupedConvolution2dLayer)

All output layers including custom classification or regression output layers created by using
nnet.layer.ClassificationLayer or nnet.layer.RegressionLayer

Hyperbolic tangent (tanh) layer (tanhLayer)

Flatten layer for the ONNX network that flattens the spatial dimensions of the input tensor to the
channel dimensions (nnet.onnx.layer.FlattenLayer)

For more information, see Supported Networks and Layers.

1-D reduction operations on the GPU

In R2019b, you can use the gpucoder. reduce function to generate CUDA code that performs
efficient 1-D reduction operations on the GPU. The generated code uses the CUDA shuffle intrinsics to
implement the reduction operation.

For example, to find the sum and max elements of an array A:

function s = myReduce(A)

s = gpucoder.reduce(A, {@mysum, @mymax});

end

function ¢ = mysum(a, b)

c = a+b;

end

function ¢ = mymax(a, b)

c = max(a,b);

end

For code generation, the gpucoder. reduce function has these requirements:

The input must be of numeric or logical data type.

The function passed through the @handle must be a binary function that accepts two inputs and
returns one output. The inputs and outputs must be of the same data type.

The function must be commutative and associative.

2-3

https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.sequenceinputlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.tanhlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.clippedrelulayer.html
https://www.mathworks.com/help/releases/R2019b/vision/ref/nnet.cnn.layer.dicepixelclassificationlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.elulayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.groupedconvolution2dlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/classificationlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/regressionlayer.html
https://www.mathworks.com/help/releases/R2019b/deeplearning/ref/nnet.cnn.layer.tanhlayer.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/ug/gpucoder-supported-networks-layers.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/ref/gpucoder.reduce.html

R2019b

Workflow and generated code improvements

R2019b includes the following improvements in the generated code:

* Performance improvement in the code generated for the cumsum function.

* Variables and expression support for specifying dimensions in the kernel pragmas. For more
information, see coder.gpu.kernel.

Code generation for more Image Processing Toolbox functions

* bwconncomp

* bwlabel

* houghlines

* imadjust

e imhist

¢ imfill

* imreconstruct

Code generation for more MATLAB functions

* interp2

* min

* MmaxX

* rgb2gray

Code generation for more Computer Vision Toolbox functions

* selectStrongestBboxMulticlass

Functionality being removed or changed

This release removes support for generating CUDA code by using CUDA toolkit version 8.

Compatibility Considerations

GPU Coder throws an error if the supported CUDA toolkit is not found on the development platform.
For information on the supported compilers and libraries, see Installing Prerequisite Products.

New examples

This release adds the following examples:

* Code Generation for a Sequence-to-Sequence LSTM Network - Shows how to generate CUDA
code for a long short-term memory (LSTM) network. The example generates a MEX application
that makes predictions at each step of an input time series. This example uses accelerometer
sensor data from a smartphone carried on the body and makes predictions on the activity of the

2-4

https://www.mathworks.com/help/releases/R2019b/matlab/ref/cumsum.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/ref/coder.gpu.kernel.html
https://www.mathworks.com/help/releases/R2019b/images/ref/bwconncomp.html
https://www.mathworks.com/help/releases/R2019b/images/ref/bwlabel.html
https://www.mathworks.com/help/releases/R2019b/images/ref/houghlines.html
https://www.mathworks.com/help/releases/R2019b/images/ref/imadjust.html
https://www.mathworks.com/help/releases/R2019b/images/ref/imhist.html
https://www.mathworks.com/help/releases/R2019b/images/ref/imfill.html
https://www.mathworks.com/help/releases/R2019b/images/ref/imreconstruct.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/interp2.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/min.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/max.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/rgb2gray.html
https://www.mathworks.com/help/releases/R2019b/vision/ref/selectstrongestbboxmulticlass.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/gs/install-prerequisites.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/examples/code-generation-sequence-to-sequence-LSTM.html

wearer. User movements are classified into one of five categories, namely dancing, running,
sitting, standing, and walking.

Deep Learning Prediction on ARM Mali GPU- Shows how to use the cnncodegen function to
generate code for an image classification application that uses deep learning on ARM Mali GPUs.
The example uses the MobileNet-v2 DAG network to perform image classification.

QR Decomposition on an NVIDIA GPU Using cuSOLVER Libraries- Shows how to create a
standalone CUDA executable that leverages the CUDA Solver library (cuSOLVER). The example
uses a curve fitting application that mimics automatic lane tracking on a road to illustrate several
topics, including:

» Fitting an arbitrary-order polynomial to noisy data using matrix QR factorization.

* Using the coder.LAPACKCallback class to provide the LAPACK library information for the
code generator when generating standalone executables.

Lane Detection on the GPU using houghlines- Shows how to generate CUDA MEX for a
MATLAB function that can detect and output lane marker boundaries on an image. The example
takes an RGB image as input and uses the rgb2gray, ordfilt2, hough, houghpeaks, and
houghlines functions that are part of Image Processing Toolbox™ to produce the lane detected
output image.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter doc gpucoder.

2-5

https://www.mathworks.com/help/releases/R2019b/gpucoder/examples/deep-learning-prediction-arm-mali.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/ref/cnncodegen.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/examples/QR-decomposition-gpu-using-cuSOLVER.html
https://www.mathworks.com/help/releases/R2019b/coder/ref/coder.lapackcallback-class.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/examples/lane-detection-using-houghlines.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/rgb2gray.html
https://www.mathworks.com/help/releases/R2019b/images/ref/ordfilt2.html
https://www.mathworks.com/help/releases/R2019b/images/ref/hough.html
https://www.mathworks.com/help/releases/R2019b/images/ref/houghpeaks.html
https://www.mathworks.com/help/releases/R2019b/images/ref/houghlines.html

R2019a

Version: 1.3
New Features

Bug Fixes

R2019a

Deep Learning: Generate code for more layers

Code generation with the CUDA Deep Neural Network library (cuDNN) supports these additional
layers:
* Layer that applies 2-D cropping to the input (crop2dLayer)

* One of the layers that allows the network to use features from earlier by making the features
match the feature map size at the later layer (YOLOv2ReorglLayer)

* Output layer for YOLO v2 object detection network (YOLOv20utputLayer).
* Transform layer for YOLO v2 object detection network (YOLOv2TransformLayer).

* Flatten activations into 1-D assuming C-style (row-major) order
(nnet.keras.layer.FlattenCStylelLayer)

* Global average pooling layer for spatial data
(nnet.keras.layer.GlobalAveragePooling2dLayer)

* Sigmoid activation layer (nnet.keras.layer.SigmoidLayer)
* Hyperbolic tangent activation layer (nnet.keras.layer.TanhLayer)
» Zero padding layer for 2-D input (nnet.keras. layer.ZeroPadding2dLayer)

Code generation with the NVIDIA TensorRT Library supports these additional layers:

* Layer that applies 2-D cropping to the input (crop2dLayer)
* Depth concatenation layer (depthConcatenationLayer)

* One of the layers that allows the network to use features from earlier by making the features
match the feature map size at the later layer (YOLOv2ReorglLayer)

* Output layer for YOLO v2 object detection network (YOLOv20utputLayer).
* Transform layer for YOLO v2 object detection network (YOLOv2TransformLayer).

* Flatten activations into 1-D assuming C-style (row-major) order
(nnet.keras.layer.FlattenCStylelLayer)

» Global average pooling layer for spatial data
(nnet.keras.layer.GlobalAveragePooling2dLayer)

* Sigmoid activation layer (nnet.keras.layer.SigmoidLayer)
* Hyperbolic tangent activation layer (nnet.keras.layer.TanhLayer)
* Zero padding layer for 2-D input (nnet.keras.layer.ZeroPadding2dLayer)

For more information on supported networks and layers, see Supported Networks and Layers.

TensorRT Support: Generate code that takes advantage of FP16
optimization in deep learning inference applications

Using TensorRT half-precision (also called FP16) arithmetic support in GPU Coder, the generated
neural network code utilizes reduced memory usage compared to FP32 precision. This enables
deployment of larger networks while taking less time than FP32. To enable half-precision, set the
DataType property of the coder.TensorRTConfig object to ' fpl6'. Alternatively, you can also set
the DataType property in the Deep Learning settings tab of the GPU Coder App.

3-2

https://www.mathworks.com/help/releases/R2019a/vision/ref/nnet.cnn.layer.crop2dlayer.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/nnet.cnn.layer.yolov2reorglayer.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/nnet.cnn.layer.yolov2outputlayer.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/nnet.cnn.layer.yolov2transformlayer.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/nnet.cnn.layer.crop2dlayer.html
https://www.mathworks.com/help/releases/R2019a/deeplearning/ref/nnet.cnn.layer.depthconcatenationlayer.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/nnet.cnn.layer.yolov2reorglayer.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/nnet.cnn.layer.yolov2outputlayer.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/nnet.cnn.layer.yolov2transformlayer.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/ug/gpucoder-supported-networks-layers.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/ref/coder.tensorrtconfig.html

Deep Learning: Generate code for more networks

In R2019a, you can generate code for networks such as fully convolutional neural networks (FCN),
YOLOV2, and segmentation networks such as U-Net. For more information, see Deep Learning with
GPU Coder.

CUDA optimized transpose function

In this release, you can use the gpucoder.transpose or gpucoder.ctranspose functions to
perform efficient out-of-place non-conjugate or conjugate transpose on the GPU. This implementation
uses shared memory for improved performance. For example,

A
B

rand(5,10);
gpucoder.transpose(A);

This function must not be used for inputs whose dimensions are greater than 2.

Support for unbounded variables

In this release, GPU Coder supports CUDA code generation for MATLAB code that contains
unbounded variables.

Workflow and generated code quality improvements

R2019a includes these workflow and generated code quality improvements:

» Verify and set up the GPU code generation environment by using the
coder.checkGpuInstallApp. The Check GPU Install app is an interactive tool to verify and
set up the GPU code generation environment on your development computer and hardware
platforms such as the NVIDIA DRIVE and Jetson. For more information, see Using the Check GPU
Install App.

You can also use the coder.checkGpuInstall function to perform the same checks from the
MATLAB command line. In this release, the coder.checkGpuInstall function has been updated
to accept a coder.gpuEnvConfig object. The coder.gpuEnvConfig object contains the
configuration parameters that coder.checkGpuInstall uses to verify the GPU code generation
environment. You can continue to use option flags with the coder.checkGpuInstall asin
previous releases, but it is recommended to use the coder.gpuEnvConfig object as this
functionality may be deprecated in a future release.

* Improved handling for loops with dynamic bound variables.
* CUDA profiling integration with the SIL interface.
* Support for the gpuArray function when performing SIL simulation.

Code generation for more MATLAB functions

¢ conv

3-3

https://www.mathworks.com/help/releases/R2019a/gpucoder/gpucoder-deep-learning.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/gpucoder-deep-learning.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/ref/gpucoder.transpose.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/ref/checkgpuinstall-app.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/gs/using-the-check-gpu-install-app.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/gs/using-the-check-gpu-install-app.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/ref/coder.checkgpuinstall.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/ref/coder.gpuenvconfig.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/ref/coder.checkgpuinstall.html
https://www.mathworks.com/help/releases/R2018b/distcomp/gpuarray_object.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/conv.html

R2019a

3-4

Code generation for more Image Processing Toolbox functions

hough
houghpeaks
ordfilt2

Code generation for more Computer Vision Toolbox functions

rectifyStereoImages

Code generation for Statistics and Machine Learning Toolbox
functions

In R2019a, you can generate optimized CUDA code for pdist and pdist2 functions from the
Statistics and Machine Learning Toolbox™ . The supported distance input argument values are
'euclidean', 'squareeuclidean’, 'seuclidean’, 'cityblock', 'minkowski’,
'chebychev', 'cosine’, 'correlation', '"hamming', and 'jaccard"'.

Code generation for Wavelet Toolbox function

In R2019a, you can generate optimized CUDA code for the cwt Wavelet Toolbox™ function. For more
information, see Supported Functions.

New examples

This release adds the following examples:

Train and Deploy Fully Convolutional Networks for Semantic Segmentation - Shows how to train
and deploy a fully convolutional semantic segmentation network on an NVIDIA GPU by using GPU
Coder.

Code Generation for Semantic Segmentation Network using U-net - Demonstrates code
generation for an image segmentation application that uses U-Net, a popular deep learning
network for image segmentation.

Code Generation for Object Detection Using YOLO v2 - Demonstrates code generation for an
object detector using a deep learning technique named you only look once (YOLO) v2.

Top-Hat Filtering on Jetson TX2- Demonstrates code generation for a top-hat filtering application
that removes uneven background illumination on NVIDIA Jetson TX2. This example requires the
GPU Coder Support Package for NVIDIA GPUs.

Deployment and Classification of Webcam Images on NVIDIA Jetson TX2 Platform- Demonstrates
deployment and classification of webcam Images on NVIDIA Jetson TX2 Platform. This example
requires the GPU Coder Support Package for NVIDIA GPUs.

Edge Detection on GPU using Order statistic filters- Demonstrates code generation for edge
detection algorithm on the GPU using order statistic filters.

Image Denoising on the GPU using Median filter- Demonstrates code generation for an image
denoising application on the GPU using median filter.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter doc gpucoder.

https://www.mathworks.com/help/releases/R2019a/images/ref/hough.html
https://www.mathworks.com/help/releases/R2019a/images/ref/houghpeaks.html
https://www.mathworks.com/help/releases/R2019a/images/ref/ordfilt2.html
https://www.mathworks.com/help/releases/R2019a/vision/ref/rectifystereoimages.html
https://www.mathworks.com/help/releases/R2019a/stats/pdist.html
https://www.mathworks.com/help/releases/R2019a/stats/pdist2.html
https://www.mathworks.com/help/releases/R2019a/wavelet/ref/cwt.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/ug/supported-functions.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/examples/train-and-deploy-a-fully-convolutional-semantic-segmentation-network-on-GPU.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/examples/code-generation-for-semantic-segmentation-using-unet.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/examples/code-generation-for-object-detection-using-YOLOv2.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/examples/top-hat-filtering-demo-on-the-nvidia-jetson-tx2-developer-kit.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/examples/deployment-classification-webcam-images-on-NVIDIA-Jetson-TX2.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/examples/edge-detection-on-gpu.html
https://www.mathworks.com/help/releases/R2019a/gpucoder/examples/image-denoising-on-gpu.html

R2018b

Version: 1.2
New Features
Bug Fixes

Compatibility Considerations

R2018b

4-2

Deep Learning Retargetability: Deploy applications that use deep
learning networks onto Intel MKL-DNN, and NVIDIA TensorRT by using
the codegen function

When targeting Intel® MKL-DNN, and NVIDIA TensorRT libraries, GPU Coder now supports code
generation for deep learning networks by using the codegen function. In previous releases, you
could use the codegen function to target only NVIDIA cuDNN libraries.

To use the codegen function, create a GPU configuration object and set the
DeepLearningConfig.TargetLib property to 'cudnn', 'mkldnn’, or 'tensorrt'. For more
information, see Code Generation for Deep Learning Networks with TensorRT and Code Generation
for Deep Learning Networks with MKL-DNN (MATLAB Coder).

Compatibility Considerations

In R2018b, you must install the MATLAB Coder™ Interface for Deep Learning Libraries and GPU
Coder Interface for Deep Learning Libraries to generate code for deep learning networks.

In previous releases, you could target NVIDIA cuDNN libraries without specifying a target library in
the code configuration object. In R2018b, you must set the cfg.DeepLearningConfig =
coder.DeepLearningConfig('cudnn') configuration object to target cuDNN libraries.

Thrust Library Support: Generate GPU-accelerated code for sort and
reduction operations by using the Thrust library

With Thrust library support in GPU Coder, you can take advantage of GPU-accelerated primitives
such as sort to implement complex high-performance parallel applications. When your MATLAB code
uses gpucoder.sort function instead of sort, GPU Coder can generate calls to the Thrust sort
primitives. For more information, see Thrust Example.

Deep Learning Optimization: Improve performance and memory
utilization through auto-tuning, layer fusion, and buffer minimization

When generating code for deep learning networks by using the cuDNN libraries, you can now take
advantage of the auto-tuning functionality in the library to select an optimal convolutional algorithm.
The convolutional algorithm selection is based on the input, kernel sizes, and memory availability
resulting in improved performance. To control the auto-tuning functionality, use the
DeepLearningConfig.AutoTuning property of the GPU code configuration object. This capability
is available only when targeting cuDNN libraries and is enabled by default. For more information, see
coder.CuDNNConfig.

In R2018b, the code generator uses layer fusion and double buffering techniques to generate
optimized code for deep learning networks.
* Convolutional and Rectified Linear Unit (ReLU) layers are fused into FusedConvRelu layer.

* Convolutional and Batch normalization layers are also fused to a convolutional layer with
modified weights and biases.

* Convolutional, Batch normalization layer, and Rectified Linear Unit (ReLU) layers are also fused as
FusedConvRelu layer.

https://www.mathworks.com/help/releases/R2018b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/ug/code-generation-using-tensorrt.html
https://www.mathworks.com/help/releases/R2018b/coder/ug/code-generation-for-deep-learning-networks-with-mkl-dnn.html
https://www.mathworks.com/help/releases/R2018b/coder/ug/code-generation-for-deep-learning-networks-with-mkl-dnn.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/ref/gpucoder.sort.html
https://www.mathworks.com/help/releases/R2018b/matlab/ref/sort.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/ug/kernels-from-library-calls.html#mw_2fbb7cd6-1203-45e5-b47f-6f0ad39385f1
https://www.mathworks.com/help/releases/R2018b/gpucoder/ref/coder.cudnnconfig.html

gpuArray Support: Use gpuArray arguments at the I/0O of MEX targets

In R2018b, you can use gpuArray arguments as inputs and outputs to an entry-point function when
generating CUDA MEX code. Because the gpuArray function copies the array to the GPU, the
generated code contains fewer cudaMemcpy calls. To use this functionality, use coder.Type to
represent the gpuArray type of an entry-point function input. For example, you can use
coder.typeof(rand(20), 'Gpu',true) or coder.typeof(gpuArray(rand(20))) to create a
gpuArray type for code generation.

Support Package for NVIDIA GPUs: Target NVIDIA Jetson and DRIVE
platforms

In R2018b, you can use the GPU Coder Support Package for NVIDIA GPUs to communicate with,
deploy, and run CUDA code on NVIDIA platforms such as Jetson and DRIVE. To download the support
package, use the Add-on Explorer. For more information on the supported workflows, see GPU Coder
Support Package for NVIDIA GPUs.

Calling External CUDA Functions: Use GPU arguments that pass by
reference when using coder.ceval

In R2018b, you can pass GPU arguments by reference when calling external CUDA functions with
coder.ceval. To make coder.ceval pass arguments by reference, use the constructs coder. ref,
coder.rref, and coder.wref.

Deep Learning Layers: Generate code for new network layers

In R2018b, you can now generate code for these layers:

» Dilated convolutional
* Variable-size I/O

Ease-of-use and traceability improvements

This release contains a new traceability report that highlights sections of MATLAB code that are
running on the GPU, a new diagnosis report to analyze performance breakdown, and an integrated
GPU profiling report to analyze execution profiles of the generated code.

You can use the traceability feature to understand how the code generator maps your algorithm to
GPU kernels, debug issues in the generated code, and evaluate the quality of the generated code. For
more information on using the traceability feature, see Trace Between MATLAB Code and Generated
CUDA Code.

In R2018Db, the code generation report has a new diagnostic section that analyzes performance issues
with your MATLAB algorithm and categorizes them as kernel issues, memory issues, pragma issues,
and design pattern issues. The report provides suggestions for resolving the issues so that you can
generate more efficient CUDA code. To enable report generation, set the GenerateReport property
in the code configuration object or enable the Always create a code generation report option in
Miore Settings ->Debugging pane of the GPU Coder app.

For information on the GPU profiling report, see Analyze Execution Profiles of the Generated Code.

4-3

https://www.mathworks.com/help/releases/R2018b/distcomp/gpuarray_object.html
https://www.mathworks.com/help/releases/R2018b/distcomp/gpuarray_object.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/coder.typeof.html
https://www.mathworks.com/help/releases/R2018b/supportpkg/nvidia/index.html
https://www.mathworks.com/help/releases/R2018b/supportpkg/nvidia/index.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/coder.ceval.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/coder.ceval.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/ug/_mw_e7ad4cf7-9c78-499b-ad03-c130526cbd52.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/ug/_mw_e7ad4cf7-9c78-499b-ad03-c130526cbd52.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/ug/_mw_4de77510-3da7-4925-ba0c-f3b47e5d0795.html

R2018b

In R2018b, CUDA syntax highlighting in the MATLAB editor helps you identify the different CUDA
language elements in the generated code. You can change syntax highlighting preferences. On the
Home tab, in the Environment section, click Preferences. Select MATLAB > Editor/Debugger >
Language > CUDA.

Code generation for more Image Processing Toolbox functions

In R2018b, you can generate optimized CUDA code for the imresize Image Processing Toolbox
function. For more information, see Supported Functions.

Deep learning examples

This release adds two deep learning examples:
* Integrating Deep Learning with GPU Coder into Simulink - Demonstrates integration of the CUDA
code generated for a deep learning network into the Simulink® environment.

* Code Generation for Denoising Deep Neural Network - Shows how to generate CUDA code for a
denoising convolutional neural network (DnCNN). You can use the denoising network to estimate
noise in a noisy image, and then remove it to obtain a denoised image.

* Deep Learning Prediction with NVIDIA TensorRT - Shows how to generate CUDA code by using
the TensorRT library.

* Deep Learning Prediction with Different Batch Sizes - Shows how to use different batch sizes
when generating code for a deep learning network.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter
gpucoderexamples.

Functionality being removed or changed

Compatibility Considerations

* Specifying the C language for the generated code through the TargetLang property of
coder.config will be removed in a future release.

Functionality What Happens When You Use |Use This Instead

This Functionality?
TargetLang = 'C' property of |You get a warning message. TargetLang = 'C++' property of
coder.config object. coder.config object.

» To perform code generation for deep learning networks, you must install the GPU Coder
Interface for Deep Learning Libraries and MATLAB Coder Interface for Deep
Learning Libraries support packages. To install these support packages, select the support
package from the MATLAB Add-Ons menu.

Functionality What Happens When You Use |Solution

This Functionality?
Using cnncodegen or codegen You get an error message. To install the required support
functions to generate code for packages, follow the links in the
deep learning networks. error message.

4-4

https://www.mathworks.com/help/releases/R2018b/images/ref/imresize.html
https://www.mathworks.com/help/releases/R2018a/gpucoder/ug/supported-functions.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/examples/integrating-deep-learning-with-gpu-coder-into-simulink.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/examples/code-generation-for-denoising-networks.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/examples/tensorrt-target.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/examples/resnet-batchsize.html
https://www.mathworks.com/help/releases/R2018a/gpucoder/ref/gpucoderexamples.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/coder.config.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/coder.config.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/coder.config.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/ref/cnncodegen.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/codegen.html

R2018a

Version: 1.1
New Features

Bug Fixes

R2018a

Directed Acyclic Graph (DAG) Networks: Generate CUDA code for deep
learning networks with DAG topology

You can use GPU Coder in tandem with the Neural Network Toolbox™ to generate CUDA code for
DAG networks. A DAG network is a neural network for deep learning that can have its layers
arranged as a directed acyclic graph. You can use a pretrained DAG network or train one by using the
Neural Network Toolbox. See, Supported Networks and Layers.

Deep Learning Layers: Generate CUDA code for popular networks such
as GooglLeNet, ResNet, and SegNet

In R2018a, you can target generate CUDA code for popular convolutional neural networks such as
GoogLeNet, ResNet, and SegNet. See, Supported Networks and Layers

TensorRT Support: Generate code that takes advantage of NVIDIA
deep learning inference optimizer and run time

With TensorRT support in GPU Coder, you can take advantage of the NVIDIA low-latency, high
throughput inference library for your deep learning applications on embedded platforms. For more
information, see CNN Code Generation, and cnncodegen.

Multi-Platform Deep Learning Targeting: Deploy deep learning
networks to Intel and ARM processors

Generate code that takes advantage of Intel Math Kernel Library for Deep Neural Networks (MKL-
DNN) for Intel CPUs, and ARM Compute libraries for mobile platforms. For more information, see
CNN Code Generation.

Code generation for Image Processing Toolbox functions

In R2018a, you can generate optimized code for Image Processing Toolbox functions such as
imerode, imdilate, and imwarp. For more information, see Supported Functions.

Code generation for Computer Vision System Toolbox functions

Generate optimized CUDA code for the matchfeatures function. For more information, see
Supported Functions.

Loop and kernel optimization

In R2018a, you can map while loops and dynamically bound for-loops to GPU kernels. This feature
allows you to generate CUDA code containing kernels with variable and symbolic dimensions.

Deep learning examples

This release adds three deep learning examples:

* Pedestrian Detection - Demonstrates code generation for a pedestrian detection implementation
that has several applications in the fields of autonomous driving, surveillance, and robotics.

5-2

https://www.mathworks.com/help/releases/R2018a/gpucoder/ug/gpucoder-supported-networks-layers.html
https://www.mathworks.com/help/releases/R2018a/gpucoder/ug/gpucoder-supported-networks-layers.html
https://www.mathworks.com/help/releases/R2018a/gpucoder/ug/cnncodegen.html
https://www.mathworks.com/help/releases/R2018a/gpucoder/ref/cnncodegen.html
https://www.mathworks.com/help/releases/R2018a/gpucoder/ug/cnncodegen.html
https://www.mathworks.com/help/releases/R2018a/images/ref/imerode.html
https://www.mathworks.com/help/releases/R2018a/images/ref/imdilate.html
https://www.mathworks.com/help/releases/R2018a/images/ref/imwarp.html
https://www.mathworks.com/help/releases/R2018a/gpucoder/ug/supported-functions.html
https://www.mathworks.com/help/releases/R2018a/vision/ref/matchfeatures.html
https://www.mathworks.com/help/releases/R2018a/gpucoder/ug/supported-functions.html
https://www.mathworks.com/help/releases/R2018a/gpucoder/examples/pedestrian-detection.html

Traffic Sign Detection and Recognition - Demonstrates how to generate CUDA MEX code to detect
traffic signs, suppress overlapping detections, and classify the detected traffic signs.

Logo Recognition Network - Demonstrates code generation for a logo classification application
that can recognize 32 logos under various lightning conditions and camera motions.

Use gpucoderexamples to see the full list of examples that ship with GPU Coder.

5-3

https://www.mathworks.com/help/releases/R2018a/gpucoder/examples/code-generation-for-traffic-sign-detection-and-recognition-networks.html
https://www.mathworks.com/help/releases/R2018a/gpucoder/examples/code-generation-for-logonet.html
https://www.mathworks.com/help/releases/R2018a/gpucoder/ref/gpucoderexamples.html

R2017b

Version: 1.0

R2017b

6-2

CUDA C and C++ code Generation

Generate CUDA C and C++ code from MATLAB code. You can integrate the generated code into your
project as source code, static libraries, or dynamic libraries. The generated code calls optimized
NVIDIA CUDA libraries, including cuDNN, cuSolver, cuFFT, and cuBLAS. To generate CUDA code,
you must have the following products:

+ MATLAB

* GPU Coder

* MATLAB Coder

* Parallel Computing Toolbox™

For more information, see Getting Started with GPU Coder.

Deep Learning Network Support

You can use GPU Coder in tandem with the Neural Network Toolbox to generate CUDA code for deep
learning networks. You can use the Neural Network Toolbox to create and train a neural network, or
import pretrained networks like VGG, MNIST, AlexNET, YOLO. See, Deep Learning.

Image Processing Toolbox Support

GPU Coder supports CUDA code generation for many of the functions from MATLAB and the Image
Processing Toolbox.

CUDA Kernel and memory Optimizations

GPU Coder performs program parallelism analysis to identify segments of code that run on the CPU
and segments that run on the GPU. After this kernel partitioning and optimization is complete, GPU
Coder performs memory optimization by analyzing the data dependency between the CPU and GPU
partitions. GPU Coder also provides you pragmas and design patterns that can be used to generate

optimized CUDA code.

MEX Function Generation for code Verification and Acceleration

With GPU Coder, you can also use the generated code within the MATLAB environment to accelerate
computationally intensive portions of your MATLAB code. MEX functionality also allows you to verify
the numerical correctness of the generated code.

Legacy CUDA code Integration

If you have highly optimized CUDA code for certain subfunctions that you want to incorporate into
your generated code, GPU Coder extends the coder. ceval functionality to help you achieve this
goal.

https://www.mathworks.com/help/releases/R2017b/gpucoder/getting-started-with-gpu-coder.html
https://www.mathworks.com/help/releases/R2017b/gpucoder/gpucoder-deep-learning.html
https://www.mathworks.com/help/releases/R2017b/coder/ref/coder.ceval.html

Hardware Integration with NVIDIA Tegra

You can use GPU Coder to generate CUDAcode for targeting embedded GPU platforms. Specifically,
you can target the NVIDIA Tegra® development boards Jetson TK1, TX1, and TX2 on either Windows
or Linux® systems.

Code Profiling and Verification

By using GPU Coder with Embedded Coder®, you can verify the numerical behavior of the generated
C/C++ code by using software-in-the-loop (SIL) execution.

6-3

	R2020a
	cuBLAS Support: Generate CUDA code for strided and batched matrix multiply
	Single Shot Object Detection (SSD) Networks: Object detection on NVIDIA GPU by using a single shot multibox detector
	Row-Major Array Layout: Simplify interfacing generated deep learning code with target libraries by storing arrays in row-major layout
	Long Short-Term Memory (LSTM) Networks: Generate code for bidirectional and stateful LSTM
	Multi-Output Networks: Generate code for networks with multiple outputs
	Deep Learning Networks: Generate code for more networks
	Generate code for half-precision floating point data type
	Deep Learning Layers: Generate code for more layers
	Code generation for more MATLAB functions
	Code generation for more Image Processing Toolbox functions
	Code generation for more Computer Vision Toolbox functions
	Code generation for more Signal Processing Toolbox functions
	Code generation for Audio Toolbox functions
	Deep Learning: Generate code that uses newer versions of ARM Compute library
	New and updated examples
	Functionality being removed or changed

	R2019b
	Long Short-Term Memory (LSTM) Networks: Generate code for recurrent networks such as LSTM
	Deep Learning Targeting: Deploy deep learning networks to ARM Mali GPU processors
	TensorRT Support: Support for NVIDIA TensorRT library on the Windows platform
	Deep Learning Networks: Generate code for more networks
	Deep Learning Layers: Generate code for more layers
	1-D reduction operations on the GPU
	Workflow and generated code improvements
	Code generation for more Image Processing Toolbox functions
	Code generation for more MATLAB functions
	Code generation for more Computer Vision Toolbox functions
	Functionality being removed or changed
	New examples

	R2019a
	Deep Learning: Generate code for more layers
	TensorRT Support: Generate code that takes advantage of FP16 optimization in deep learning inference applications
	Deep Learning: Generate code for more networks
	CUDA optimized transpose function
	Support for unbounded variables
	Workflow and generated code quality improvements
	Code generation for more MATLAB functions
	Code generation for more Image Processing Toolbox functions
	Code generation for more Computer Vision Toolbox functions
	Code generation for Statistics and Machine Learning Toolbox functions
	Code generation for Wavelet Toolbox function
	New examples

	R2018b
	Deep Learning Retargetability: Deploy applications that use deep learning networks onto Intel MKL-DNN, and NVIDIA TensorRT by using the codegen function
	Thrust Library Support: Generate GPU-accelerated code for sort and reduction operations by using the Thrust library
	Deep Learning Optimization: Improve performance and memory utilization through auto-tuning, layer fusion, and buffer minimization
	gpuArray Support: Use gpuArray arguments at the I/O of MEX targets
	Support Package for NVIDIA GPUs: Target NVIDIA Jetson and DRIVE platforms​​
	Calling External CUDA Functions: Use GPU arguments that pass by reference when using coder.ceval
	Deep Learning Layers: Generate code for new network layers
	Ease-of-use and traceability improvements
	Code generation for more Image Processing Toolbox functions
	Deep learning examples
	Functionality being removed or changed

	R2018a
	Directed Acyclic Graph (DAG) Networks: Generate CUDA code for deep learning networks with DAG topology
	Deep Learning Layers: Generate CUDA code for popular networks such as GoogLeNet, ResNet, and SegNet
	TensorRT Support: Generate code that takes advantage of NVIDIA deep learning inference optimizer and run time
	Multi-Platform Deep Learning Targeting: Deploy deep learning networks to Intel and ARM processors
	Code generation for Image Processing Toolbox functions
	Code generation for Computer Vision System Toolbox functions
	Loop and kernel optimization
	Deep learning examples

	R2017b
	CUDA C and C++ code Generation
	Deep Learning Network Support
	Image Processing Toolbox Support
	CUDA Kernel and memory Optimizations
	MEX Function Generation for code Verification and Acceleration
	Legacy CUDA code Integration
	Hardware Integration with NVIDIA Tegra
	Code Profiling and Verification

